Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Ying Xin, Hui-Min Liu, Wei Zhang and Wen-Qin Zhang*

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: wqzhang@tju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.030$
ωR factor $=0.076$
Data-to-parameter ratio $=18.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-(1,4-Butanediyldithio)-1,3-dithiazole

The title compound, $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{4}$, was synthesized by the reaction of the potassium salt of 2-thiothiazole and 1,4dibromobutane. The two 2-thiazolethio groups are related by a center of symmetry. The plane defined by the butyl carbon chain is approximately orthogonal to the thiazole plane, with a dihedral angle of $84.7(8)^{\circ}$. Intermolecular S \cdots S interactions between adjacent molecules link them into infinite chains running along the c axis.

Comment

It is well known that thiazole and its derivatives exhibit remarkable bioactivities, such as antibacterial activity (Chang et al., 1982), antiphlogistic activity (Garbarczyk et al., 1999) and antitumor activities El-Subbagh \& Al-Obaid, 1996), as well as cytotoxic activities against a variety of human cancer cell lines in vitro (Gu et al., 1999). This prompted us to explore new compounds containing two or more thiazole groups. We report here a new thiazole derivative, namely $2,2^{\prime}-(1,4-$ Butanediyldithio)-1,3-dithiazole, (I).

(I)

The molecule of (I) is centrosymmetric (Fig. 1). The two thiazole rings, related by the centre of symmetry at the midpoint of the C5-C5A bond, lie on opposite sides of the zigzag 1,4-butanediyl chain. The C3-S1 bond length $[1.752(2) \AA]$ is significantly shorter than $\mathrm{C} 4-\mathrm{S} 1[1.819$ (2) Å] due to $p-\pi$ conjugation, similar to that observed in $2,2^{\prime}-[1,4$-phenylenebis(methylenethio)]dithiazole (Zhang et al., 2003). The shortening of $\mathrm{C} 3-\mathrm{S} 1$ relative to $\mathrm{C} 4-\mathrm{S} 1$ is not unexpected, reflecting the difference between a $\mathrm{Cs} p^{2}-\mathrm{S}$ bond and a $\mathrm{Csp}{ }^{3}-$ S bond. Exocyclic atom S 1 is almost coplanar with the bonded thiazole ring, the deviation being 0.0499 (3) Å.

Intermolecular $\mathrm{S} \cdots \mathrm{S}$ interactions between S atoms belonging to two parallel molecules are observed, as can be seen in the packing diagram shown in Fig. 2. The $\mathrm{S} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$ and S1 \cdots S2 ${ }^{\mathrm{i}}$ interactions [3.536 (3) and 3.542 (4) \AA; symmetry code (i): $-x,-y, 2-z]$ link the molecules in the crystal structure into infinite chains running along the c axis.

Experimental

The title compound was synthesized according to the literature method of Zhang et al. (2003). To a solution containing 0.5 g (4.3 mmol) of 2-thiothiazole, $0.24 \mathrm{~g}(4.3 \mathrm{mmol})$ of KOH and 3 ml of ethanol at $323-333 \mathrm{~K}$ were added dropwise; $0.46 \mathrm{~g}(2.1 \mathrm{mmol})$ of $1,4-$ dibromobutane in 2 ml ethanol was added with stirring. The reaction mixture was then stirred at the same temperature for 24 h . The

Received 12 June 2003

Accepted 9 July 2003
Online 17 July 2003

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms are drawn as small spheres of arbitrary radii.

Figure 2
The packing diagram for (I), viewed along the a axis. The dashed lines show the short contacts between neighboring molecules.
precipitate was filtered off and washed with ethanol. The filtrate was concentrated and left in the ambient atmosphere to give colorless crystals of (I) suitable for X-ray analysis, in a yield of 64.6% (m.p. 333-334 K). IR (KBr) 3116 (w), 3086 (w), 2943 (w), 2867 (w), 1477 (ms), 1386 (s), 1294 (w), $1042(s), 1019(s), 726(m s) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.95-1.92(4 \mathrm{H}, m), 3.26(4 \mathrm{H}, s), 7.22(4 \mathrm{H}, d, J=3.2 \mathrm{~Hz})$, $7.67-7.66(2 \mathrm{H}, d, J=2.8 \mathrm{~Hz})$ p.p.m.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{4} \\
& M_{r}=288.46 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.067(2) \AA \\
& b=14.099(5) \AA \\
& c=7.733(3) \AA \\
& \beta=97.101(6)^{\circ} \\
& V=656.4(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\text {min }}=0.772, T_{\text {max }}=0.870$
3664 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0344 P)^{2}\right. \\
& \quad+0.1369 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{aligned}
$$

1336 independent reflections
1021 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-4 \rightarrow 7$
$k=-17 \rightarrow 17$
$l=-9 \rightarrow 9$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.076$
$S=1.04$
1336 reflections
74 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

S1-C3	$1.752(2)$	S2-C3	$1.7413(18)$
S1-C4	$1.819(2)$	$\mathrm{N} 1-\mathrm{C} 3$	$1.297(3)$
S2-C1	$1.717(2)$	$\mathrm{N} 1-\mathrm{C} 2$	$1.394(3)$
C3-S1-C4	$101.28(10)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$109.12(17)$
C1-S2-C3	$88.91(10)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 2$	$109.93(17)$

The H atoms were included in calculated positions nand refined with riding-model constraints.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997) and SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We gratefully acknowledge financial support from the Foundation for University Key Teachers by the Ministry of Education of China.

References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chang, C. K., Myoung, S. K. \& Ward, B. (1982). J. Chem. Soc. Chem. Commun. pp. 716-719.
El-Subbagh, H. I. \& Al-Obaid, A. M. (1996). Eur. J. Med. Chem. 31, 10171021.

Garbarczyk, J., Kamyszek, G. \& Boese, R. (1999). J. Mol. Struct. 479, 21-30.
Gu, X. H., Wan, X. Z. \& Jiang, B. (1999). Bioorg. Med. Chem. Lett. 9, 569-572.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, W., Liu, H. M., Li, C. B. \& Zhang, W. Q. (2003). Acta Cryst. E59, o26o27.

